i coding convolutional neural network classify images in tensorflow there problem:
when try feed numpy array of flattened images (3 channels rgb values 0 255) tf.estimator.inputs.numpy_input_fn following error:
typeerror: failed convert object of type <class 'dict'> tensor. contents: {'x': <tf.tensor 'random_shuffle_queue_dequeuemany:1' shape=(8, 196608) dtype=uint8>}. consider casting elements supported type.
my numpy_imput_fn looks this:
train_input_fn = tf.estimator.inputs.numpy_input_fn( x={'x': train_x}, y=train_y, batch_size=8, num_epochs=none, shuffle=true)
in documentation function said x should dict of numpy array:
x: dict of numpy array object.
nevermind, having same problem fixed it. in model function had:
input_layer = tf.reshape(features, [-1, 256, 256, 1])
which raised type error. fix have access 'x' key in features dictionary:
input_layer = tf.reshape(features['x'], [-1, 256, 256, 1])
Comments
Post a Comment