i add mean , std column every column of dataframe. unfortunately code replaces original columns mean , std ones.
np.random.seed(50) df = pd.dataframe(np.random.randint(0,9,size=(30, 3)), columns=list('abc')) print df
df
b c 0 0 0 1 1 4 6 5 2 6 6 5 3 2 7 4 4 3 6 4 5 1 5 0 6 6 3 2 7 3 3 3 8 2 0 3 9 2 0 3 10 0 0 7 11 3 8 7 12 4 4 0 13 0 3 3 14 1 4 5 15 7 0 3 16 5 6 1 17 4 4 4 18 5 4 6 19 3 0 5 20 8 3 6 21 2 8 8 22 5 4 7 23 8 4 4 24 2 1 8 25 7 1 5 26 8 3 3 27 5 3 6 28 8 6 0 29 8 2 1
here's code from:
https://pandas.pydata.org/pandas-docs/stable/computation.html
r = df.rolling(window=5) print 'agg mean , sdt df' print r['a', 'b', 'c'].agg([np.mean, np.std]) print
output
agg mean , sdt df
b c mean std mean std mean std 0 nan nan nan nan nan nan 1 nan nan nan nan nan nan 2 nan nan nan nan nan nan 3 nan nan nan nan nan nan 4 3.0 2.236068 5.0 2.828427 3.8 1.643168 5 3.2 1.923538 6.0 0.707107 3.6 2.073644 6 3.6 2.302173 5.4 1.516575 3.0 2.000000 7 3.0 1.870829 4.8 1.788854 2.6 1.673320 8 3.0 1.870829 3.4 2.302173 2.4 1.516575 9 2.8 1.923538 2.2 2.167948 2.2 1.303840 10 2.6 2.190890 1.2 1.643168 3.6 1.949359 11 2.0 1.224745 2.2 3.492850 4.6 2.190890 12 2.2 1.483240 2.4 3.577709 4.0 3.000000 13 1.8 1.788854 3.0 3.316625 4.0 3.000000 14 1.6 1.816590 3.8 2.863564 4.4 2.966479 15 3.0 2.738613 3.8 2.863564 3.6 2.607681 16 3.4 2.880972 3.4 2.190890 2.4 1.949359 17 3.4 2.880972 3.4 2.190890 3.2 1.483240 18 4.4 2.190890 3.6 2.190890 3.8 1.923538 19 4.8 1.483240 2.8 2.683282 3.8 1.923538 20 5.0 1.870829 3.4 2.190890 4.4 2.073644 21 4.4 2.302173 3.8 2.863564 5.8 1.483240 22 4.6 2.302173 3.8 2.863564 6.4 1.140175 23 5.2 2.774887 3.8 2.863564 6.0 1.581139 24 5.0 3.000000 4.0 2.549510 6.6 1.673320 25 4.8 2.774887 3.6 2.880972 6.4 1.816590 26 6.0 2.549510 2.6 1.516575 5.4 2.073644 27 6.0 2.549510 2.4 1.341641 5.2 1.923538 28 6.0 2.549510 2.8 2.049390 4.4 3.049590 29 7.2 1.303840 3.0 1.870829 3.0 2.549510
and looking columns (and data) being:
a_mean a_std b b_mean b_std c c_mean c_std
i cannot find solution 'adding' these columns.
thanks advice.
in [18]: res = df.rolling(5).agg(['mean','std']) in [19]: res.columns = res.columns.map('_'.join) in [54]: cols = np.concatenate(list(zip(df.columns, res.columns[0::2], res.columns[1::2]))) in [55]: cols out[55]: array(['a', 'a_mean', 'a_std', 'b', 'b_mean', 'b_std', 'c', 'c_mean', 'c_std'], dtype='<u6') in [56]: res.join(df).loc[:, cols] out[56]: a_mean a_std b b_mean b_std c c_mean c_std 0 0 nan nan 0 nan nan 1 nan nan 1 4 nan nan 6 nan nan 5 nan nan 2 6 nan nan 6 nan nan 5 nan nan 3 2 nan nan 7 nan nan 4 nan nan 4 3 3.0 2.236068 6 5.0 2.828427 4 3.8 1.643168 5 1 3.2 1.923538 5 6.0 0.707107 0 3.6 2.073644 6 6 3.6 2.302173 3 5.4 1.516575 2 3.0 2.000000 7 3 3.0 1.870829 3 4.8 1.788854 3 2.6 1.673320 8 2 3.0 1.870829 0 3.4 2.302173 3 2.4 1.516575 9 2 2.8 1.923538 0 2.2 2.167948 3 2.2 1.303840 10 0 2.6 2.190890 0 1.2 1.643168 7 3.6 1.949359 11 3 2.0 1.224745 8 2.2 3.492850 7 4.6 2.190890 12 4 2.2 1.483240 4 2.4 3.577709 0 4.0 3.000000 13 0 1.8 1.788854 3 3.0 3.316625 3 4.0 3.000000 14 1 1.6 1.816590 4 3.8 2.863564 5 4.4 2.966479 15 7 3.0 2.738613 0 3.8 2.863564 3 3.6 2.607681 16 5 3.4 2.880972 6 3.4 2.190890 1 2.4 1.949359 17 4 3.4 2.880972 4 3.4 2.190890 4 3.2 1.483240 18 5 4.4 2.190890 4 3.6 2.190890 6 3.8 1.923538 19 3 4.8 1.483240 0 2.8 2.683282 5 3.8 1.923538 20 8 5.0 1.870829 3 3.4 2.190890 6 4.4 2.073644 21 2 4.4 2.302173 8 3.8 2.863564 8 5.8 1.483240 22 5 4.6 2.302173 4 3.8 2.863564 7 6.4 1.140175 23 8 5.2 2.774887 4 3.8 2.863564 4 6.0 1.581139 24 2 5.0 3.000000 1 4.0 2.549510 8 6.6 1.673320 25 7 4.8 2.774887 1 3.6 2.880972 5 6.4 1.816590 26 8 6.0 2.549510 3 2.6 1.516575 3 5.4 2.073644 27 5 6.0 2.549510 3 2.4 1.341641 6 5.2 1.923538 28 8 6.0 2.549510 6 2.8 2.049390 0 4.4 3.049590 29 8 7.2 1.303840 2 3.0 1.870829 1 3.0 2.549510
Comments
Post a Comment