python - Tensorflow Extract Indices Not Equal to Zero -


i want return dense tensor of non-zero indices each row. example, given tensors:

[0,1,1] [1,0,0] [0,0,1] [0,1,0] 

should return

[1,2] [0] [2] [1] 

i can indices using tf.where(), not know how combine results based on first index. example:

graph = tf.graph() graph.as_default():     data = tf.constant([[0,1,1],[1,0,0],[0,0,1],[0,1,0]])     indices = tf.where(tf.not_equal(data,0)) sess = tf.interactivesession(graph=graph) sess.run(tf.local_variables_initializer()) print(sess.run([indices])) 

the above code returns:

[array([[0, 1],        [0, 2],        [1, 0],        [2, 2],        [3, 1]])] 

however, combine result based on first column of these indices. can suggest way this?

update

trying work larger number of dimensions , running error. if run code below on matrix

sess = tf.interactivesession() = tf.constant([[0, 1, 1, 0, 0, 0, 0, 0, 0, 0],        [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],        [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],        [0, 0, 0, 0, 0, 1, 1, 0, 0, 0],        [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],        [0, 0, 0, 0, 0, 0, 0, 1, 0, 1],        [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],        [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],        [1, 0, 0, 0, 0, 0, 0, 0, 0, 1]]) row_counts = tf.reduce_sum(a, axis=1) max_padding = tf.reduce_max(row_counts) extra_padding = max_padding - row_counts extra_padding_col = tf.expand_dims(extra_padding, 1) range_row = tf.expand_dims(tf.range(max_padding), 0) padding_array = tf.cast(tf.tile(range_row, [9, 1])<extra_padding_col, tf.int32) b = tf.concat([a, padding_array], axis=1) result = tf.map_fn(lambda x: tf.cast(tf.where(tf.not_equal(x, 0)), tf.int32), b) result = tf.where(result<=max_padding, result, -1*tf.ones_like(result)) # replace -1's result = tf.reshape(result, (int(result.get_shape()[0]), max_padding)) result.eval() 

then many -1's solution seems not quite there:

[[ 1,  2],        [ 2, -1],        [-1, -1],        [-1, -1],        [-1, -1],        [-1, -1],        [-1, -1],        [-1, -1],        [ 0, -1]] 

notice in example, output not matrix jagged array. jagged arrays have limited support in tensorflow (through tensorarray), it's more convenient deal rectangular arrays. pad each row -1's make output rectangular

suppose output rectangular, without padding use map_fn follows

tf.reset_default_graph() sess = tf.interactivesession() = tf.constant([[0,1,1],[1,1,0],[1,0,1],[1,1,0]]) # cast needed because map_fn likes keep same dtype, tf.where returns int64 result = tf.map_fn(lambda x: tf.cast(tf.where(tf.not_equal(x, 0)), tf.int32), a) # remove level of nesting sess.run(tf.reshape(result, (4, 2))) 

output is

array([[1, 2],        [0, 1],        [0, 2],        [0, 1]], dtype=int32) 

when padding needed, this

sess = tf.interactivesession() = tf.constant([[0, 1, 1, 0, 0, 0, 0, 0, 0, 0],    [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],    [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],    [0, 0, 0, 0, 0, 1, 1, 0, 0, 0],    [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],    [0, 0, 0, 0, 0, 0, 0, 1, 0, 1],    [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],    [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],    [1, 0, 0, 0, 0, 0, 0, 0, 0, 1]]) row_counts = tf.reduce_sum(a, axis=1) max_padding = tf.reduce_max(row_counts) max_index = int(a.get_shape()[1]) extra_padding = max_padding - row_counts extra_padding_col = tf.expand_dims(extra_padding, 1) range_row = tf.expand_dims(tf.range(max_padding), 0) num_rows = tf.squeeze(tf.shape(a)[0]) padding_array = tf.cast(tf.tile(range_row, [num_rows, 1])<extra_padding_col, tf.int32) b = tf.concat([a, padding_array], axis=1) result = tf.map_fn(lambda x: tf.cast(tf.where(tf.not_equal(x, 0)), tf.int32), b) result = tf.where(result<max_index, result, -1*tf.ones_like(result)) # replace -1's result = tf.reshape(result, (int(result.get_shape()[0]), max_padding)) result.eval() 

this should produce

array([[ 1,  2],        [ 2, -1],        [ 4, -1],        [ 5,  6],        [ 6, -1],        [ 7,  9],        [ 8, -1],        [ 9, -1],        [ 0,  9]], dtype=int32) 

Comments