what easiest way grab corresponding prediction values , indices based on above threshold?
consider problem:
sess = tf.interactivesession() predictions = tf.constant([[ 0.32957435, 0.82079124, 0.54503286, 0.51966476, 0.63359714, 0.92034972, 0.13774526, 0.45154464, 0.18284607, 0.14604568], [ 0.78612137, 0.98291659, 0.4841609 , 0.63260579, 0.21568334, 0.82978213, 0.05054879, 0.09517837, 0.28309393, 0.01788473], [ 0.05706763, 0.24366784, 0.04608512, 0.32987678, 0.2342416 , 0.91725373, 0.60084391, 0.51787591, 0.74161232, 0.30830121], [ 0.67310858, 0.6250236 , 0.42477703, 0.37107778, 0.65123832, 0.97282803, 0.59533679, 0.49564457, 0.54935825, 0.63008392], [ 0.70233917, 0.48129809, 0.59114349, 0.63535333, 0.71188867, 0.4799161 , 0.90896237, 0.86089945, 0.47896886, 0.83451629], [ 0.82923532, 0.8950938 , 0.99231505, 0.05526769, 0.98151541, 0.18153167, 0.63851702, 0.07426929, 0.91846335, 0.81246626], [ 0.12850153, 0.23018432, 0.29871917, 0.71228445, 0.13235569, 0.41061044, 0.98215759, 0.90024149, 0.53385031, 0.92247963], [ 0.87011361, 0.44218826, 0.01772344, 0.87317121, 0.52231467, 0.86476815, 0.25352192, 0.31709731, 0.38249743, 0.74694788], [ 0.15262914, 0.49544573, 0.49644637, 0.07461977, 0.13706958, 0.18619633, 0.86163998, 0.03700352, 0.51173556, 0.40018845]]) score_idx = tf.where(predictions > 0.8) scores = tf.sparsetensor(prediction_idx, tf.gather_nd(predictions, score_idx), dense_shape=tf.shape(predictions, out_type=tf.int64)) scores.eval()
i can sparse tensor has of predictions above 0.8, looking return 2 separate 1d tensors:
- predicted indices = list of indexes above threshold (0.8 in example)
- scores = scores corresponding examples
so first row is:
[ 0.32957435, 0.82079124, 0.54503286, 0.51966476, 0.63359714, 0.92034972, 0.13774526, 0.45154464, 0.18284607, 0.14604568]
i looking return:
- predicted_indices = [1,5]
- scores = [0.821, 0.920]
is there simple solution missing?
Comments
Post a Comment