given 2 numbers , b, have find nth number divisible or b.
the format looks below:
input : first line consists of integer t, denoting number of test cases. second line contains 3 integers a, b , n
output : each test case, print nth number in new line.
constraints :
1≤t≤105
1≤a,b≤104
1≤n≤10
sample input
1
2 3 10
sample output
15
explanation
the numbers divisible 2 or 3 are: 2,3,4,6,8,9,10,12,14,15 , 10th number 15
my code
test_case=input() if int(test_case)<=100000 , int(test_case)>=1: p in range(int(test_case)): count=1 j=1 inp=list(map(int,input().strip('').split())) if inp[0]<=10000 , inp[0]>=1 , inp[1]<=10000 , inp[1]>=1 , inp[1]<=1000000000 , inp[1]>=1: while(true ): if count<=inp[2] : k=j if j%inp[0]==0 or j%inp[1] ==0: count=count+1 j=j+1 else : j=j+1 else: break print(k) else: break
problem statement: single test case input 2000 3000 100000 taking more 1 second complete.i want if can results in less 1 second. there time efficient approach problem,may if can use data structure , algorithms here??
for every 2 numbers there number k
such k=a*b
. there many multiples of a
, b
under k
. set can created so:
s = set(a*1, b*1, ... a*(b-1), b*(a-1), a*b)
say take values a=2, b=3
s = (2,3,4,6)
. these possible values of c
:
[1 - 4] => (2,3,4,6) [5 - 8] => 6 + (2,3,4,6) [9 - 12] => 6*2 + (2,3,4,6) ...
notice values repeat predictable pattern. row can take value of c
, divide length of set s
(call n
). set index mod of c
n
. subtract 1
1
indexing used in problem.
row = floor((c-1)/n) column = `(c-1) % n` result = (a*b)*row + s(column)
python impl:
a = 2000 b = 3000 c = 100000 s = list(set([a*i in range(1, b+1)] + [b*i in range(1, a+1)])) print((((c-1)//len(s)) * (a*b)) + s[(c - 1)%len(s)])
Comments
Post a Comment