given 2 numbers a and b, have find nth number divisible by a or b.
input : first line consists of integer t, denoting number of test cases. second line contains 3 integers a, b and n .
output : each test case, print nth number in new line.
constraints : 1≤t≤10^5
1≤a,b≤10^4
1≤n≤10^9
sample input
1 2 3 10
sample output
15
explanation numbers divisible by 2 or 3 are: 2,3,4,6,8,9,10,12,14,15 and 10th number is 15.
my code (in c) :
#include<stdio.h> int main() { long long int i,a,b,n,j,c=0,small; scanf("%lld",&i); while(i--) { scanf("%lld%lld%lld",&a,&b,&n); if(a==b) { printf("%lld ",a*n); return 0; } else { if(a>b) small = b ; else small = ; for(j=small;1;j++) { if(j%a==0 || j%b==0) c++ ; if(c==n) break ; } } printf("%lld",j); } return 0 ; }
but not time efficient (i.e. takes more 1 sec) on input : 1000 10000 100000000
you using linear search has o(n) time complexity in worst case, hence takes more 1 sec or more. need improve searching time.
you need use binary search find answer. use pie(principle of inclusion-exclusion) calculate how many numbers 1 x divisible either or b. now, in each step of binary search calculate how many numbers divisible either or b. when number equals n, return , print answer. takes o(log n) steps in worst case.
#include<stdio.h> typedef long long ll; ll gcd(ll a, ll b) { if (a == 0) return b; return gcd(b % a, a); } ll bs(ll a, ll b, ll n) { ll high,low,mid,cnt,lcm; low = 1; high = 1e18; lcm = (a * b) / gcd(a, b); while(low <= high) { mid = (low + high) / 2; cnt = (mid / a) + (mid / b) - (mid / lcm); if(cnt < n) low = mid + 1; if(cnt > n) high = mid - 1; if(cnt == n) break; } while(mid % && mid % b) mid--; return mid; } int main() { ll a,b,n,t; scanf("%lld",&t); while(t--) { scanf("%lld %lld %lld", &a, &b, &n); printf("%lld\n", bs(a, b, n)); } return 0; }
Comments
Post a Comment